一道数学数列题,a_(n+1)=1/[3^(n+1)]
、因为a_(n+1)=1/[3^(n+1)]
所以an=1/(3^n).
人气:271 ℃ 时间:2020-05-10 05:45:07
解答
令k=n+1,则由 a_(n+1)=1/[3^(n+1)]有
a_k =1/(3^k)
再把k换成n有
a_n=1/(3^n).
推荐
- 设数列{an}的前n项和为Sn.已知a1=a,an+1=Sn+3n,n∈N*.由 (Ⅰ)设bn=Sn-3n,求数列{bn}的通项公式; (Ⅱ)若an+1≥an,n∈N*,求a的取值范围.
- a(n+1)=2an-a(n-1) 3bn-b(n-1)=n
- 已知数列{An}满足A1=1,A=3(n-1)+A(n>/2)
- 已知a>0,数列{an}满足a1=a,an+1=a+1/an,n=1,2,3……
- 已知数列{an}中,a1=3,a2=6,a(n+2)=a(n-1)-an,则a2009=
- What water is like还是How water is lke
- 带物的成语有哪些成语
- 一个等边三角形的一条边长2/9米,它的周长是多少米?
猜你喜欢