设椭圆中心在坐标原点,焦点在X轴上,离心率为E=2分之根号2,它与直线Y=-X-1相交于A,B 两点,OA垂直于OB,
求些椭圆方程
人气:179 ℃ 时间:2019-08-21 10:01:53
解答
已知e=2分之根号2
a=根号2c
设点AB分别为(x1,-x1-1)(x2,-x2-1)
设椭圆方程x^2/a^2+y^2/b^2=1
b^2=a^2-c^2=c^2
x^2/2c^2+y^2/c^2=1
把点AB带入椭圆方程
又知道OA垂直OB
联立方程组一解不就得了
推荐
- 已知椭圆E中心在原点O,焦点在X轴上,其离心率e=根号(2/3),过C(-1,0)的直线L与椭圆E相交于A,B两点,且满足向量AC=2向量CB.
- 椭圆中心是坐标原点O,焦点在x轴上,e=根号3/2 过椭圆的左焦点F的直线交椭圆于PQ两点
- 已知椭圆E的中心在原点,焦点在x轴上,椭圆上的点到焦点的距离的最小值为根号2-1,离心率为e=根号2/2.
- 设椭圆的中心在坐标原点o,焦点在x轴上,离心率e=根号2/2,过椭圆外一点m(0,2)作直线l交椭圆与A,B两点
- 已知中心在原点o 焦点在x轴上 离心率为2分之根号3的椭圆过点(根号2.2分之根号2)-1.求椭圆的
- 165×38-38×65的简便方法怎么算
- 如何计算平方面积与立方面积
- 以字母“i”结尾的单词
猜你喜欢