A,B是抛物线y^2=2px(p>0)上的两点,满足OA垂直OB(O为原点),求证直线AB恒过一定点
我变换式子变来变去都没出来
但是思路理不清
只想要一下思路
人气:499 ℃ 时间:2019-09-09 18:25:42
解答
设A(x1,y1) B(x2,y2)
直线AB方程为 x=my+b
与 抛物线联立 得y1*y2=-2pb x1*x2=b^2
又因为OA垂直与OB 所以 OA OB的向量积 等於0
所以x1*x2+y1*y2=0 所以 b^2-2pb=0 b=0 舍
所以b=2p
所以 恒过(2p,0)
推荐
- A,B是抛物线y^2=2px(p>0)上的两点,满足OA垂直OB(O为原点),求证直线AB恒过一定点
- 设A,B为抛物线y^2=2px(p>0)上的两点,满足OA垂直OB(O为原点),证明直线AB经过定点
- A,B是抛物线y^2=2px(p>0)上的两点,满足OA垂直OB,求证直线AB恒过一定点
- 已知A.B是抛物线y^=2px(p>0)上的两点.0为原点.若|OA|=|OB| 且△AOB的垂心恰是抛物线的焦点,则求直线AB的方
- 已知A,B是抛物线y2=2px(p>0)上两点,O为坐标原点,若OA=OB,且△AOB的垂心恰是次抛物线的焦点,则直线AB
- 汉译英:一年有三百六十五天
- 丙烯醛在空气中完全燃烧化学方程式,速度!
- 4个棱长都是8厘米的正方形,拼成一个长方形体,表面积是多少
猜你喜欢