>
数学
>
若函数f(x)满足
f(x)+1=
1
f(x+1)
,当x∈[0,1]时,f(x)=x,若在区间(-1,1]上,g(x)=f(x)-mx-m有两个零点,则实数m的取值范围是( )
A.
[0,
1
2
)
B.
[
1
2
,+∞)
C.
[0,
1
3
)
D.
(0,
1
2
]
人气:162 ℃ 时间:2019-08-21 03:22:39
解答
∵
f(x)+1=
1
f(x+1)
,当x∈[0,1]时,f(x)=x,
∴x∈(-1,0)时,
f(x)+1=
1
f(x+1)
=
1
x+1
,
∴f(x)=
1
x+1
−1
,
因为g(x)=f(x)-mx-m有两个零点,
所以y=f(x)与y=mx+m的图象有两个交点,
函数图象如图,由图得,当0<m
≤
1
2
时,两函数有两个交点
故选 D.
推荐
若函数f(x)满足f(x)+1=1f(x+1),当x∈[0,1]时,f(x)=x,若在区间(-1,1]上,g(x)=f(x)-mx-m有两个零点,则实数m的取值范围是( ) A.[0,12) B.[12,+∞) C.[0,13) D.(0
若函数f(x)=mx^2-x-2=0只有一个零点,试求实数m的取值范围.
已知函数f(x)=4x+m•2x+1有且仅有一个零点,求m的取值范围,并求出该零点.
已知函数f(x)=mx2-3x+1的零点至少有一个在原点右侧,求实数m的范围.
设函数f(x)=x^3-2ex^2+mx-lnx,记g(x)=f(x)/x,若函数g(x)至少存在一个零点,则实数m的取值范围
ben would like beef and carrot dumplings.对划线部分提问 ()()()()would ben like?
Shopping for clothes is not the same for men as it is for
国内有哪些大学有量子物理学
猜你喜欢
用18厘米长的铁丝围成一个长和宽都整厘米数的正方形.这个长方形的面积最大的【】平方厘米
英语翻译
CH4 空间结构
小宇同学准备检查新建房屋的生活用电线路安装是否有问题,他先断开所有用电器和总开关,然后将火线上的保险丝取下来,换上一只额定电压为220V的灯泡,闭合总开关,发现灯泡正常发光
已知球面的三个大圆所在平面两两垂直,则以这三个大圆的交点为顶点的正八面体的体积与球体积之比等于
核外电子运动轨迹问题
一个两位数,十位上的数字比个位上的数字大5,如果把十位上的数字与个位上的数字换位置,那么得到的新两位数比原来的两位数的一半还少9,那么原来的两位数是_.
从甲地到乙地,小明要走5小时,小芳要走6小时,小明与小芳所需时间比是( ):( )小明与小芳的速度比是( ):( )
© 2025 79432.Com All Rights Reserved.
电脑版
|
手机版