一道高中数学题(关于向量)
若o是三角形ABC内一点,OA+OB+OC=0,求证O为三角形ABC的重心.
(OA,OB,OC都是向量)
人气:223 ℃ 时间:2020-04-30 11:46:51
解答
取AB中点为D,OA+OB=2 OD,(平行四边形对角线互相平分)又因为OA+OB+OC=0,所以OC=2 OD且共线,同理找BC中点为S,AC中点为W,OA=2 OS且共线,OB=2 OW且共线.D,S,W分别为AB,BC,AC中点,所以O为三角形重心.
谢谢~
推荐
- 设向量abc满足绝对值a等于绝对值b﹦1,a乘b﹦负二分之一,﹙a-c,b-c﹚﹦六十度,则c的绝对值的最大值等于多少
- 一道高中数学向量题的思路
- 已知矩形ABCD和矩形ADEF,AD为公共边,但它们不在同一平面上,点M,N分别是在对角线BD,AE上,且BM=1/3BD,AN=1/3AE,证明直线MN‖平面CDE(用空间向量的方法做,几何方法的不要)
- 在三角形ABC中,角C=90度,向量AB=(k,1),向量AC=(2,3),则k=____
- 平面向量a,b共线的充要条件是( ) A.a,b方向相同 B.a,b两向量中至少有一个为零向量 C.∃λ∈R,b=λa D.存在不全为零的实数λ1,λ2,λ1a+λ2b=0
- 12、诸葛亮说“志当存高远”.这里的“志”的含义是( ).
- 任意5个不相同的自然数,其中至少有两个数的差是4的倍数,这是为什么?(六年级)
- 36.7-9.97 4.6×9.9 的简便计算怎么写?
猜你喜欢