(2)数列{an}的首项为a1,公比为q.由题意知:2am+2=am+am+1
即2•a1•qm+1=a1•qm-1+a1•qm∵a1≠0,q≠0,∴2q2-q-1=0,∴q=1或q=−
1 |
2 |
当q=1时,有Sm=ma1,Sm+2=(m+2)a1,Sm+1=(m+1)a1,
显然:2Sm+2≠Sm+Sm+1.此时逆命题为假.
当q=−
1 |
2 |
2a1(1−(−
| ||
1+
|
4 |
3 |
1 |
2 |
a1(1−(−
| ||
1+
|
2a1(1−(−
| ||
1+
|
4 |
3 |
1 |
2 |
∴2Sm+2=Sm+Sm+1,此时逆命题为真.
1 |
2 |
1 |
2 |
2a1(1−(−
| ||
1+
|
4 |
3 |
1 |
2 |
a1(1−(−
| ||
1+
|
2a1(1−(−
| ||
1+
|
4 |
3 |
1 |
2 |