> 数学 >
若不等式x2-mx+1≤0与mx2+x-1>0对任意x∈R均不成立,试求实数m的取值范围.
刚刚用了25分诱惑你们...没了分了
人气:117 ℃ 时间:2020-05-12 21:29:56
解答
x2-mx+1≤0对任意x∈R均不成立
也就是恒正
必有m^2-4<0
所以-2mx2+x-1>0对任意x∈R均不成立
也就是-mx^2-x+1>=0恒成立
所以-m(x+1/2m)^2+1+1/(4m)>=0恒成立
因而-m>=0,1+1/(4m)>=0
m<=-0.25
综上,-2
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版