如图1,在平面直角坐标系中,O是坐标原点,平行四边形ABCD的顶点A的坐标为(-2,0),点D的坐标为(0,2√3
如图1,在平面直角坐标系中,O是坐标原点,平行四边形ABCD的顶点A的坐标为 (-2,0),点D的坐标为(0,2√3),点B在X轴的正半轴上,点E为线段AD的中点,过点E的直线L与x轴交于点F,与射线DC交于点G.
(1)求∠DCB的度数;
(2)当点F的坐标为(-4,0)时,求点G的坐标;
(3)连结OE,以OE所在直线为对称轴,△OEF经轴对称变换后得到△OEF',记直线EF'与射线DC的交点为H.
①如图2,当点G在点H的左侧时,求证:△DEG∽△DHE;
②若△EHG的面积为3√3,求点F的坐标.
人气:153 ℃ 时间:2019-08-18 11:32:53
解答
2010的宁波中考数学
我这个复制过来不是很好,你可以去菁优看原文.这种带分析的有助于解题,楼下那种随便找找就有.
(1)由于平行四边形的对角相等,只需求得∠DAO的度数即可,在Rt△OAD中,根据A、D的坐标,可得到OA、OD的长,那么∠DAO的度数就不难求得了.
(2)①根据A、D的坐标,易求得E点坐标,即可得到AE、OE的长,由此可判定△AOE是等边三角形,那么∠OEA=∠AOE=∠EOF′=60°,由此可推出OF′∥AE,即∠DEH=∠OF′E,根据轴对称的性质知∠OF′E=∠EFA,通过等量代换可得∠EFA=∠DGE=∠DEH,由此可证得所求的三角形相似.
②过E作CD的垂线,设垂足为M,则EM为△EGH中GH边上的高,根据△EGH的面积即可求得GH的长,在①题已经证得△DEG∽△DHE,可得DE2=DG•DH,可设出DG的长,然后表示出DH的值,代入上面的等量关系式中,即可求得DG的长,根据轴对称的性质知:DG=AF,由此得到AF的长,进而可求得F点的坐标,需注意的是,在表示DH的长时,要分两种情况考虑:一、点H在G的右侧,二、点H在G的左侧.
(1)在直角△OAD中,∵tan∠OAD=OD:OA= 3,
∴∠A=60°,
∵四边形ABCD是平行四边形,
∴∠C=∠A=60°;
(2)①证明:∵A(-2,0),D(0,2 3),且E是AD的中点,
∴E(-1,3),AE=DE=2,OE=OA=2,
∴△OAE是等边三角形,则∠AOE=∠AEO=60°;
根据轴对称的性质知:∠AOE=∠EOF′,故∠EOF′=∠AEO=60°,即OF′∥AE,
∴∠OF′E=∠DEH;
∵∠OF′E=∠OFE=∠DGE,
∴∠DGE=∠DEH,
又∵∠GDE=∠EDH,
∴△DGE∽△DEH.
②过点E作EM⊥直线CD于点M,
∵CD∥AB,
∴∠EDM=∠DAB=60°,
∴Em=DE•sin60°=2× 32= 3,
∵S△EGH= 12•GH•ME= 12•GH• 3=3 3,
∴GH=6;
∵△DHE∽△DEG,
∴ DEDG= DHDE即DE2=DG•DH,
当点H在点G的右侧时,设DG=x,DH=x+6,
∴4=x(x+6),
解得:x1=-3+ 13+2= 13-1,
∴点F的坐标为(- 13+1,0);
当点H在点G的左侧时,设DG=x,DH=x-6,
∴4=x(x-6),
解得:x1=3+ 13,x2=3- 13(舍),
∵△DEG≌△AEF,
∴AF=DG=3+ 13,
∵OF=AO+AF=3+ 13+2= 13+5,
∴点F的坐标为(- 13-5,0),
综上可知,点F的坐标有两个,分别是F1(- 13+1,0),F2(- 13-5,0).
推荐
- 如图,在平面直角坐标系中.点o是坐标原点,四边形ABCD为平行四边形,点A的坐标为(-2,0),点B的坐标为(0,-1),点C.D都在第一象限,线段AD与y轴交与点E.(2)若AE=DE,点C,D都在双曲线y=k/x(x>0)上,求k值 (
- 在平面直角坐标系中,O是坐标原点,平行四边形ABCD的顶点A的坐标为(-1,0),点D的坐标为(0,2√3),点B在X轴的正半轴上,点E为线段AD的中点,过点E的直线L与X轴交于点F,与射线DC交于点G,连结OE,以OE所在直线为对称轴,三
- 如图1,在平面直角坐标系中,将▱ABCD放置在第一象限,且AB∥x 轴.直线y=-x从原点出发沿x轴正方向平移,在平移过程中直线被平行四边形截得的线段长度l与直线在x轴上平移的距离m的函数图
- 如图,已知平行四边形ABCD的两条对角线交于平面直角坐标系的原点,点A的坐标为(-2,3),则点C的坐标为_.
- 志诚小学三四年级的学生人数比一二年级的学生人数多100人,但比五六年级的学生人数少53人,已知五六年级的学生人数和一二年级的学生人数都是完全平方数,那么志诚中学的学生人数有多少
- He said ___ the book was very interesting and ___ all the children liked to read it.
- “吹面不寒杨柳风”,不错的,像母亲的手抚摸着你.风里带来些新翻的泥土的气息,混着青草味,还有各种花
- 童乐厂生产一批儿童玩具,第一周完
猜你喜欢
- 图中两个三角形的面积各是540平方厘米,求平行四边形的周长.
- 描写夏季景物的诗句有哪些?
- Let's me run a race.改错
- 为什么要海藻酸钠溶液冷却后才能加入酵母细胞
- 用所给的词适当填空 )(not play)football on the street.)(read)English every day.
- 质量为m的小木块放在质量为M的倾角为θ的光滑斜面上,斜面在推水平F的作用下,在光滑水平面上运动,木块与斜面保持相对静止,斜面对木块的支持力是
- 填成语,最重的话是什么,最大的手术,最大的被褥,最少的恩情,最短的季节,还有在编几个“有趣的成语之最”
- 关于猫头鹰的古文,嗯就是作者看到猫头鹰觉得不吉利.然后又想到生死.进而释然得出生若系舟(?)结论的