如图,在平面直角坐标系中.点o是坐标原点,四边形ABCD为平行四边形,点A的坐标为(-2,0),点B的坐标为(0,-1),点C.D都在第一象限,线段AD与y轴交与点E.(2)若AE=DE,点C,D都在双曲线y=k/x(x>0)上,求k值 (3)在(2)的条件下,连接OC,若点F在直线AD上,连接OF,CF,若△COF为等腰三角形,求点F的坐标.
人气:302 ℃ 时间:2019-08-20 07:18:59
解答
(1)在直角△OAD中,∵tan∠OAD=OD:OA= 3,
∴∠A=60°,
∵四边形ABCD是平行四边形,
∴∠C=∠A=60°;
(2)①证明:∵A(-2,0),D(0,2 3),且E是AD的中点,
∴E(-1,3),AE=DE=2,OE=OA=2,
∴△OAE是等边三角形,则∠AOE=∠AEO=60°;
根据轴对称的性质知:∠AOE=∠EOF′,故∠EOF′=∠AEO=60°,即OF′∥AE,
∴∠OF′E=∠DEH;
∵∠OF′E=∠OFE=∠DGE,
∴∠DGE=∠DEH,
又∵∠GDE=∠EDH,
∴△DGE∽△DEH.
②过点E作EM⊥直线CD于点M,
∵CD∥AB,
∴∠EDM=∠DAB=60°,
∴Em=DE•sin60°=2× 32= 3,
∵S△EGH= 12•GH•ME= 12•GH• 3=3 3,
∴GH=6;
∵△DHE∽△DEG,
∴ DEDG= DHDE即DE2=DG•DH,
当点H在点G的右侧时,设DG=x,DH=x+6,
∴4=x(x+6),
解得:x1=-3+ 13+2= 13-1,
∴点F的坐标为(- 13+1,0);
当点H在点G的左侧时,设DG=x,DH=x-6,
∴4=x(x-6),
解得:x1=3+ 13,x2=3- 13(舍),
∵△DEG≌△AEF,
∴AF=DG=3+ 13,
∵OF=AO+AF=3+ 13+2= 13+5,
∴点F的坐标为(- 13-5,0),
综上可知,点F的坐标有两个,分别是F1(- 13+1,0),F2(- 13-5,0).
推荐
- 如图1,在平面直角坐标系中,O是坐标原点,平行四边形ABCD的顶点A的坐标为(-2,0),点D的坐标为(0,2√3
- 如图1,在平面直角坐标系中,将▱ABCD放置在第一象限,且AB∥x 轴.直线y=-x从原点出发沿x轴正方向平移,在平移过程中直线被平行四边形截得的线段长度l与直线在x轴上平移的距离m的函数图
- 已知,如图:在平面直角坐标系中,O为坐标原点,四边形OABC是矩形,点A、C的坐标分别为A(10,0)、C(0,4),点D是OA的中点,点P在BC边上运动,当△ODP是腰长为5的等腰三角形时,点P的坐
- 如图,在平面直角坐标系中,点O为坐标原点,Rt△OAB的斜边OA在X轴的正半轴上,点A坐标A(2,0),点B在第一象限内,且OB=√3,∠OBA=90°.以边OB所在直线折叠Rt△OAB,使点A落在点C处.
- 在平面直角坐标系中,O是坐标原点,平行四边形ABCD的顶点A的坐标为(-1,0),点D的坐标为(0,2√3),点B在X轴的正半轴上,点E为线段AD的中点,过点E的直线L与X轴交于点F,与射线DC交于点G,连结OE,以OE所在直线为对称轴,三
- 有氧气参加,既不是化合反应又不是分解反应的(只写文字表达式)
- 题目:How to learn English well 英语作文开头是:English is important and useful to use.How can we learn it well?Here are my suggest
- 某跑道的周长为400 m且两端为半圆形,要使矩形内部操场的面积最大,直线跑道的长应为多少?
猜你喜欢
- 一辆摩托车行驶60千米,占全程的三分之一,全程多少千米
- 数字推理题 1,2,2,3,4,(),括号应该是什么数
- 已知α∈(0,π/2),sinα=3/5,cos(α+π/4)的值
- 五二班男生占总数的九分之五,转走4名女生后现在男生占总人数的五分之三.现在全班共有多少人?用算式解
- 解方程 36-X=20 6*X=0.3 0.8(X-2)=6.4
- 求 CO2+H2O+BaCO3= 和H2S+Na2S= 的化学反应方程式及离子方程式
- 舞蹈队一共有30人,女队员是男队员的2倍少3人,问男队员和女队员各多少人?
- 从0、1、2、3…2011、2012这2013个自然数中,取出若干个数,要使取出的任意两个数的和都是50的整倍数