在平面直角坐标系中,已知抛物线y=-x²+bx+c与x轴交于点A,B(点A在点B的左侧),与y轴的正半轴交与点
顶点为E
(1)若b=2,c=3,求此时抛物线顶点的坐标
(2)将(1)的抛物线向下平移,若平移后,在四边形ABCD中满足S△BCE=S△ABC,求此时直线BC的解析式
(3)将(1)中的抛物线做适当的平移,若平移后,在四边形ABEC中满足S△BCE=2S△AOC,且顶点E恰好落在直线y=-4x+3上,求此时抛物线的解析式
求求你们了,马上就要
人气:376 ℃ 时间:2019-08-22 14:36:19
解答
(1)若b=2,c=3,求此时抛物线顶点的坐标y=-x^2+2x+3=-(x-1)^2+4 所以 x=1的时候y最大值即顶点E坐标(1,4)(2)y=-x^2+2x+3=-(x-1)^2+4=0(点A在点B的左侧),A点坐标(-1,0), B点坐标(3,0)与y轴的正半轴交与点c(0,3)将...
推荐
- 在平面直角坐标系中,已知抛物线y=-x²+bx+c与x轴交于点A,B(点A在点B的左侧),与y轴的正半轴交与点
- 二次函数在平面直角坐标系中,已知抛物线y=-x的平方+bx+c与x轴交于点A、B(点A在点B的左侧),与y轴的正半
- 在平面直角坐标系中,已知抛物线y=-x^+bx+c与x轴交于点A,B(A左B右),与Y轴的正半轴交于点C,顶点为E,
- 在平面直角坐标系中,抛物线y=x^2+bx+c与x轴交于A,B两点(A在B左侧),与y轴交于点C,点B的坐标为(3,0),将直线y=kx沿y轴向上平移3个单位长度后恰好经过B,C两点.
- 如图,在平面直角坐标系xOy中,抛物线y=x2+bx+c与x轴交于A、B两点,点A在x轴负半轴,点B在x轴正半轴,与y轴交于点C,且tan∠ACO=1/2,CO=BO,AB=3,则这条抛物线的函数解析式是_.
- 锂单质应该如何保存拜托各位了 3Q
- 细胞癌变后mRNA的种类和数量改变?
- 五年级上册数学练习题(每种十题)
猜你喜欢