f(x)=sin²ωx+√3cosωxsinωx
=(√3/2)sin2ωx-(1/2)cos2ωx+(1/2)
=sin(2ωx-π/6)+(1/2)
相邻两对称轴之间的距离是半个周期,则一个周期是π,得:2π/|2ω|=π,得:ω=1
即:f(x)=sin(2x-π/6)+(1/2)
(1)f(π/6)=sin(π/3-π/6)+(1/2)=(1+√3)/2
(2)f(kπ+π/12)=sin(2kπ)+(1/2)
要使得其在[-π/6,π/3]上递增,则:其周期最小至少要2×(2π/3)=4π/3,
则:
2π/|2k|≥4π/3,得:0