> 数学 >
已知函数f(x)=sin(x π/6) +sin(x-π/6) +acosx +b(a,b∈r,且均为常数)
若f(x)在区间[-π/3,0]上单调递增,且恰好能够取到f(x)的最小值2,试求a、b的值
人气:196 ℃ 时间:2019-08-26 08:29:02
解答
f(x)=sin(x π/6) +sin(x-π/6) +acosx +b(a,b∈r,且均为常数)
应该是f(x)=sin(x +π/6) +sin(x-π/6) +acosx +b(a,b∈r,且均为常数)?
f(x)=sin(x+ π/6) +sin(x-π/6) +acosx +b(a,b∈r,且均为常数)
=2sinxcosπ/6+acosx+b
=√3sinx+acosx+b
=√(3+a^2)sin(x+θ)+b (sinθ=a/√(3+a^2),cosθ=√3/√(3+a^2),
f(x)在区间[-π/3,0]上单调递增,且恰好能够取到f(x)的最小值2
∴-π/3+θ=-π/2,b-√(3+a^2)=2
θ=-π/6
a=-1,b=2+2=4
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版