设a1,a2,…,an是一组线性无关的n维向量,证明:任一n维向量都可由它们线性表示.
人气:176 ℃ 时间:2020-03-20 03:23:57
解答
证明:设a为任一n维向量.
因为a1,a2,…,an,a是n+1个n维向量,
所以a1,a2,…,an,a是线性相关的.
又因为a1,a2,…,an线性无关,
所以r(a1,a2,…,an,a)=r(a1,a2,…,an)=n
因而a能由a1,a2,…,an线性表示,且表示式是唯一的.
推荐
- a1,a2,…an是一组n维向量,证明:它们线性无关的充分必要条件是任一n维向量组都可以由它们线性表示.
- 证明:N维向量组a1,a2.an线性无关的充分必要条件是任意n维向量都可以表示为a1,a2.an的线性组合.
- 设a1,a2,a3...an为一组n维向量,证明这n个向量线性无关的充要条件是任一n...
- 证明n维向量组a1,a2,…,an线性无关的充分必要条件是:任一n维向量a都可以由它们线性表示.
- 设A1,A2,……An∈R^n,证明:向量组A1,A2,……An线性无关当且仅当任一n维向量均可由A1,A2,…An线性表示
- 五环电阻棕、绿、黑、黑、棕怎么读?
- 国庆长假,大街上什么什么(写两个体现人多的成语)
- 有一桶油,油和桶共重52千克,倒出一半油后,这时连桶共重27千克,原来桶里有多少克油?如题 谢谢了
猜你喜欢