一道求点共线的高二数学题
在正方形ABCR-A1B1C1D1中,E,F分别是B1C1和D1C1的中点,P,Q分别为EF和BD的中点,对角线A1C与平面EFDB交于H点,求证:P,H,Q三点共线
人气:115 ℃ 时间:2020-02-06 05:05:01
解答
(1)证法一:∵EF是△D1B1C1的中位线,
∴EF∥B1D1.
在正方体AC1中,B1D1∥BD,
∴EF∥BD.
由公理3知EF、BD确定一个平面,
即D、B、F、E四点共面.
证法二:延长BF,CC1交于点G,延长DE,CC1交于点G′.
G与G′重合DE,BF是相交直线D,B,F,E四点共面.
(2)证法二:正方体ABCD—A1B1C1D1中,设A1ACC1确定的平面为α,设平面DBFE为β,
∵为α、β的公共点.
同理,P亦为α、β的公共点,
∴R∈PQ,即P、Q、R三点共线.
帮助:证明多点共线,可先由两点确定一直线,证其余点在直线上.要证点在一条直线上,只需证明这点是两平面的公共点,而直线是两个平面的交线,这是证点在直线上的常用方法.
你可以任选其一哦~
推荐
- 甲、乙、丙3位志愿者安排在周一至周五的5天中参加某项志愿者活动,要求每人参加一天且每天至多安排一人,并要求甲安排在另外两位前面.不同的安排方法共有( ) A.20种 B.30种 C.40种
- 如图,已知矩形ABCD所在平面外一点P,PA⊥平面ABCD,E、F分别是AB、PC的中点. (1)求证:EF∥平面PAD; (2)求证:EF⊥CD.
- 命题p:(x+1)²+y²>m²,q:(x-3)²+(y+3)²≤36,已知非q是p的充分不必要条件,求实数m的取值范围.
- 高二数学三点共线如何证明
- 1.已知z+1的实部与虚部相等且都大于0,虚数z满足z-2/z^2+1属于R,求z.
- 已知(2x-21)(3x-7)-(3x-7)(x-13)可分解因式为(3x+a)(x+b),其中a,b均为整数,则a+3b=
- 我是新高一学生,对于v-t(速度和时间)图像怎么去看速度的方向和加速度的方向,还有x-t
- (-30/7)/(3/1-5/3+3/10) 负30分之7除以三分之一减五分之三加十分之三.
猜你喜欢