函数y=22x-2x+2+7,定义域为[m,n],值域为[3,7],则n+m的最大值______.
人气:314 ℃ 时间:2019-08-19 22:55:05
解答
因为y=22x-2x+2+7=(2x)2-4⋅2x+7,令t=2x,
因为m≤t≤n,所以2m≤t≤2n.
所以原函数等价为y=f(t)=t2-4t+7=(t-2)2+3,
因为函数的值域为[3,7],所以当t=2时,y=3.
由(t-2)2+3=7,解得t=0(舍去)或t=4.
当t=2时,得2x=2,解得x=1.当t=4时,得2x=4,即x=2.
所以函数的定义域为[m,2](0≤m≤1),所以当m=1,n=2时,m+n最大为3.
故答案为:3.
推荐
猜你喜欢
- 一项工程,甲工程队先做4天,完成了工程的五分之一后,乙和甲一起做6天,完成总工程.
- 在1到100这100个数中,任找10个数,使其倒数之和等于1.
- 如果a^2+b^2=25,a+b=7.则a-b的值为?
- The old city wall is 25 kilometers( ).填空
- 汽车在匀速开上坡的过程中,她的动能——,势能——,机械能——,填增加,不变,减少
- 一元二次方程解决增降率问题
- Let's _____our class.begin begins
- 纸锅烧水疑问