若函数f(x)=loga(2x^2+x) (a>0,a≠1)在区间(1/2,1)内恒有f(x)>0,则f(x)的单调递增区间是————?
我自己做的答案是负无穷到负二分一~可是错了.
人气:192 ℃ 时间:2019-11-15 07:46:36
解答
先确定f(x)定义域为x0
令g(x)=2x^2+x,显然开口向上、对称轴x=-1/4
当x0时,g(x)为增函数
令h(x)=loga(x),此为对数函数
当a>1时,h(x)为增函数
当01时,有2x^2+x>1,即x1/2
当0
推荐
- 若函数f(x)=loga((2x^2)+x)在区间(0,1/2)内恒有f(x)>0,则f(x)的单调递增区间是什么
- 若函数f(x)=loga(2x2+x)(a>0且a≠1)在区间(0,12)内恒有f(x)>0,则f(x)的单调递减区间为( ) A.(-∞,14) B.(-14,+∞) C.(0,+∞) D.(-∞,12)
- 若函数f(x)=loga(2x^2+x) (a>0,a≠1)在区间(0,1/2)内恒有f(x)>0,解关于x的不等式f(log2(9^x+2^(2x+1)+1))>f(2log4(6^x+4^(4x+1)+1))
- 函数f(x)=loga (2x^2+x)(a>0,且a≠1)在区间(1/2,1)内恒有f(x)>0,则f(x)的单调递增区间是
- x)若函数f(x)=loga(2x^2+x) (a>0,a≠1)在区间(0,1/2)内恒有f(x)>0,求f(x)的单调递增区间是?
- 甲乙分别后,沿着铁轨反向而行.此时一列火车匀速地向甲迎面驶来,列车在甲身旁开过,用了15s;然后在乙身旁开过,用了17s.以知两人的步行速度都是3,6km/h,这列火车有多长?
- 水沸腾时的特点 是()
- 一根钢管,用去五分之三米,还剩五分之二米.
猜你喜欢