已知x、y均为实数,且满足xy+x+y=17,x^2y+y^2x=66,求x^4+x^3y+x^2*y^2+y^3x+y^4的值
人气:392 ℃ 时间:2019-09-09 18:32:19
解答
由已知:xy+x+y=17,xy(x+y)=66,可知xy和x+y是方程t2-17t+66=0的两个实数根,得:t1=6,t2=11.即xy=6,x+y=11,或xy=11,x+y=6.当xy=6,x+y=11时,x,y是方程u2-11u+6=0的两个实数根.这时,x2+y2=(x+y)2-2xy=112-2×6=109.x4+x...
推荐
猜你喜欢
- 10米是8米的( )%?算式?
- 一个长方形长减少26厘米宽减少8厘米面积减少1568平方厘米,这时正好是一个正方形.求原长方形周长
- Today,the weather is good,I do at home eggs Fried rice.Although I did,but I still careful of stirring.When I need to put
- in,her,are,the,pants,drawer.连词成句
- 若函数f(x)=a^²-2x(其中a>0,且a≠1)在R上有最大值,则满足loga(x-3)>0的取值范围
- 难溶于水的盐易溶于水的盐
- 一杯糖水,糖5克,水30克,另一杯,糖和糖水的比是1:6,第( )杯甜
- send us a copy of your sponsor letter and passport.家里人是sponsor怎么还要写信寄护照?