![](http://hiphotos.baidu.com/zhidao/pic/item/e824b899a9014c08e7378f14097b02087bf4f477.jpg)
∵△AOB的角平分线AC与BD交于点P,
∴∠PAB=
1 |
2 |
1 |
2 |
∴∠APB=180°-(
∠ABO |
2 |
∠BAO |
2 |
∵∠ABO+∠BAO+80°=180°,
∴∠APB=130°;
(2)保持不变;
∵∠ABD是△ABC的外角,
∴∠ABD=∠C+∠BAC①,
又∵∠YBA是△AOB的外角,
∴∠ABY=∠AOB+∠OAB②,
由BD平分∠YBA,AC平分∠BAO,
∴∠YBD=∠ABD=
1 |
2 |
1 |
2 |
②÷2得:
1 |
2 |
1 |
2 |
1 |
2 |
即∠ABD=30°+∠BAC③,
由①和③得:∠C=30°.
答:∠APB=130°;∠C=30°.