(1)不变;∵△AOB的角平分线AC与BD交于点P,
∴∠PAB=
| 1 |
| 2 |
| 1 |
| 2 |
∴∠APB=180°-(
| ∠ABO |
| 2 |
| ∠BAO |
| 2 |
∵∠ABO+∠BAO+80°=180°,
∴∠APB=130°;
(2)保持不变;
∵∠ABD是△ABC的外角,
∴∠ABD=∠C+∠BAC①,
又∵∠YBA是△AOB的外角,
∴∠ABY=∠AOB+∠OAB②,
由BD平分∠YBA,AC平分∠BAO,
∴∠YBD=∠ABD=
| 1 |
| 2 |
| 1 |
| 2 |
②÷2得:
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
即∠ABD=30°+∠BAC③,
由①和③得:∠C=30°.
答:∠APB=130°;∠C=30°.


