> 数学 >
我赶着呢 绝对值三角不等式 已知a,b,c∈R,函数f(x)=ax2+bx+c,当x∈[-1,1]时,均有丨f(x)丨≤
已知a,b,c∈R,函数f(x)=ax²+bx+c,当x∈[-1,1]时,均有丨f(x)丨≤1,试证明:丨a丨≤2
人气:496 ℃ 时间:2020-10-01 15:10:30
解答
由已知|f(1)| = | a + b +c | ≤ 1
|f(-1)| = | a - b +c | ≤ 1
两式相加有| a + b +c | + | a - b +c | ≤ 2
再由三角不等式有 : 2| a + c | = | (a + b +c) +(a - b +c) |
≤ | a + b +c | + | a - b +c | ≤ 2
得 | a + c | ≤ 1
另一方面 | f(0) | =| c | ≤ 1
同样由三角不等式有 |a| =|a + c - c| ≤ |a+c|+|-c| ≤ 2
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版