> 数学 >
计算极限 lim(x→+∞) (√(x²+3x)-√(x²-3x)) 高数有什么学习秘诀吗?
人气:465 ℃ 时间:2019-10-26 02:50:08
解答
这个分母有理化啊
lim(x→+∞) (√(x²+3x)-√(x²-3x))
=lim(x→+∞) [√(x²+3x)-√(x²-3x)][√(x²+3x)+√(x²-3x)]/[√(x²+3x)+√(x²-3x)]
=lim(x→+∞) 6x/[√(x²+3x)+√(x²-3x)]
=3lim(x→+∞) 6x/[√(x²+3x)+√(x²-3x)]这一步之后怎么就直接等于三了?lim(x→+∞) (√(x²+3x)-√(x²-3x))=lim(x→+∞) [√(x²+3x)-√(x²-3x)][√(x²+3x)+√(x²-3x)]/[√(x²+3x)+√(x²-3x)]=lim(x→+∞) 6x/[√(x²+3x)+√(x²-3x)]=lim(x→+∞) 6x/[√(x²)+√(x²)]=3懂了吧,因为二次项远远大于一次项,所以一次项没有了
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版