设函数f(x),g(x)在[a,b]上连续,在(a,b)内具有二阶导数且存在相等的最大值,f(a)=g(a),f(b)=g(b),证明:存在ξ∈(a,b),使得f″(ξ)=g″(ξ).
人气:339 ℃ 时间:2019-08-18 08:33:36
解答
令F(x)=f(x)-g(x),则F(x)在上连续,在(a,b)内具有二阶导数且F(a)=F(b)=0.
(1)若f(x),g(x)在(a,b)内同一点c取得最大值,
则f(c)=g(c)⇒F(c)=0,
于是由罗尔定理可得,
存在ξ1∈(a,c),ξ2∈(c,b),
使得F′(ξ1)=F′(ξ2)=0.
再利用罗尔定理,可得,
存在ξ∈(ξ1,ξ2),
使得F″(ξ)=0,即f″(ξ)=g″(ξ).
(2)若f(x),g(x)在(a,b)内不同点c1,c2取得最大值,
则f(c1)=g(c2)=M,
于是F(c1)=f(c1)-g(c1)>0,F(c2)=f(c2)-g(c2)<0,
于是由零值定理可得,存在c3∈(c1,c2),使得F(c3)=0
于是由罗尔定理可得,存在ξ1∈(a,c3),ξ2∈(c3,b),使得F′(ξ1)=F′(ξ2)=0.
再利用罗尔定理,可得,存在ξ∈(ξ1,ξ2),使得F″(ξ)=0,即f″(ξ)=g″(ξ).
推荐
- 假设函数f(x)和g(x)在[a,b]上存在二阶导数,并且g″(x)≠0,f(a)=f(b)=g(a)=g(b)=0,试证: (1)在开区间(a,b)内g(x)≠0; (2)在开区间(a,b)内至少存在一点ξ,使f(
- 设函数f(x),g(x)在[a,b]上连续,在(a,b)内具有二阶导数且f(a)=f(b)=0,f(c)>0,c属于(a,b),则存在s属于(a,b)
- 对任意x属于R,函数f(x)的导数存在.若f'(x)>f(X)且a>0,则以下正确的是
- 若函数f(x)具有二阶导数,又设f(a)=f(c)=f(b),其中a
- 若函数f(x)的二阶导数存在,且f"(x)>0,则F(x)=[f(x)-f(a)]/[x-a]在(a,b]内
- 李白与与汪伦分别时说些什么
- I't is nearly seven o'clock.Jack-----be here at any moment.
- Make a list and add a few more.如何翻译?a few more译作什么?
猜你喜欢