已知tanx,tany是方程x^2+6x+7=0的两个根,求证sin(x+y)=cos(x+y).
人气:276 ℃ 时间:2020-02-06 03:46:49
解答
tanx+tany=-6,tanx*tany=7
tan(x+y)=(tanx+tany)/(1-tanxtany)
=(-6)/(1-7)=1
tan(x+y)=sin(x+y)/cos(x+y)=1
sin(x+y)=cos(x+y).
推荐
- 已知tanx,tany是方程x^2+6x+7=0的两个根,求证sin(x+y)=cos(x+y).
- 已知TanX,TanY是方程X^-3X-3=0的俩根,求sin^(x+y)-3sin(x+y)cos(x+y)-3cos^(x+y)的值,
- tanX,tanY是方程X²+(4M+1)X+2M=0的俩根,且M≠-1/2求sin(X+Y)/cos(X-Y)
- 已知tanx,tany是方程x平方+Px+Q=0的两个根求sin(x+y)平方+
- 证明 (tanX+tanY)/(tanX-tanY)=(sin(X+Y))/(sin(X-Y))
- 4个9怎么等于24
- 不等式 难题
- A={x|y=根号1-x²,x∈z}.B={y|y=x²+1,x∈A},求A∩B=
猜你喜欢