已知函数f(x)=ax^2-9x,公差为2的等差数列{an}的前n项和为Sn,若Sn=f(n),其中n属于N*.⑴求实数a的值
17.已知函数f(x)=4sin wx sin^2(wx/2+拍/4)+cos2wx,其中w>0.⑴当w=1时,求函数f(x)的最小正周期.⑵若函数f(x)在区间[-拍/2,2拍/3]上是增函数,求w的取值范围.
人气:163 ℃ 时间:2020-05-26 22:28:50
解答
Sn=f(n)=an²-9n,则:
a1=S1=a-9,
当n≥2时,an=Sn-S(n-1)=f(n)-f(n-1)=2an-a-9,则公差d=an-a(n-1)=2a=2,得:a=1
所以f(x)=x²-9x,an=2n-10,Sn=n²-9n
17、f(x)=4sin(wx)sin²[(wx/2)+π/4]+cos2wx
=2sin(wx)[1-cos(wx+π/2)]+cos2wx
=2sin(wx)[1+sin(wx]+cos(2wx)
=2sin(wx)+2sin²(wx)+cos(2wx)
=2sin(wx)+1-cos2wx+cos(2wx)
=2sin(wx)+1
①若w=1,则:f(x)=2sinx+1,则f(x)的最小正周期是2π/1=2π
②若f(x)在[-π/2,2π/3]上递增,则函数f(x)的半个周期T/2应该满足:
T/2≥2×(2π/3)
T≥8π/3
2π/w≥8π/3
得:0
推荐
- 已知{an}是首项为19,公差为-2的等差数列,Sn为{an}的前n项和,(1)求通项an及Sn(2)设{bn-an}是首项为1,公比为3的等比数列,求数列{b}的通项公式及其前n项和T
- 已知{an}是首项为19,公差为-2的等差数列,Sn为{an}的前n项和. (Ⅰ)求通项an及a2; (Ⅱ)设首项为1,公比为3的等比数列{bn},求数列{bn}的通项公式及其前n项和Tn.
- 已知{an}是公差为d的等差数列,它的前n项和为Sn,等比数列{bn}的前n项和为Tn,S4=2S2+4,b2=1\9,T2=4\9
- 1.设等差数列{an}的公差为d如果它的前n项和sn=-n^2那么an和d分别为多少
- 已知数列{an}的前n项和为Sn,a1=1.数列{an+Sn}是公差为2的等差数列
- 现有两个旅游团,若分别购票,两个团共付门票1166元;如果两团合并购票共要880元.这两个团各有多少人?
- paint怎么读
- Jim no more went there改为同义句
猜你喜欢