已知向量a的模=根号2,b的模=1,向量a与b的夹角为45°,求使相量(2a+xb)与(xa-3b)的夹角是锐角的x的取值范围.
人气:292 ℃ 时间:2020-04-14 08:44:38
解答
建立一个坐标系,设a=(1,1),则b=(1,0)
∴2a+xb=(2+x,2),xa-3b=(x-3,x)
cosθ=[(2+x,2)(x-3,x)]/(2a+xb)与(xa-3b)的模的积
若θ为锐角,则cosθ大于0,(2a+xb)与(xa-3b)的模的积恒大于零,所以(2+x,2)(x-3,x)>0
即x^2+x-6>0,x∈(负无穷,-3)∪(2,正无穷)你确定吗?
推荐
猜你喜欢
- 2,5,10,17……的通项公式是什么
- 数学怎么在最后一星期提高20分?
- 煤气灶出来的火是黄火好还是蓝火好?如果出来的是黄火,说明煤气有问题还是灶有问题?
- {int x=1,a=0,b=0;switch(x){ case 0:b++; case 1:a++; case 2:a++;b++;} printf("a=%db=%d\n",a,b);
- day off与vacation holiday的区别
- .steven took part in five basketball matches,()()()()was in March this year
- 已知log2的3次方=m 求log6的2次方的值
- 一个数分别以2,3,5都余1,这个数最小是多少?100之内有几个这样的数?