这个题目和函数的凹凸性质无关.
首先,根据函数的定义域,我们知道:
x1>=-1, x2>=-1.
所以:
f(x1)-f(x2)
=(x1+1)^(1/2)-(x2+1)^(1/2)
=[(x1+1)-(x2+1)]/[(x1+1)^(1/2)+(x2+1)^(1/2)]
=(x1-x2)/[(x1+1)^(1/2)+(x2+1)^(1/2)]
所以:
|f(x1)-f(x2)|=|x1-x2|/|(x1+1)^(1/2)+(x2+1)^(1/2)|
这里,你的题目因为缺少条件而中断了.
应该有条件可以说明:
|(x1+1)^(1/2)+(x2+1)^(1/2)|>1,
比如说x1,x2都是非负数之类的.