sina+sinb=
| ||
| 2 |
| 1 |
| 2 |
∴sin2a+2sinbsina+sin2b=
| 1 |
| 2 |
∵cosa+cosb=t,∴(cosa+cosb)2=t2 ,
即cos2a+2cosbcosa+cos2b=t2…②,
①+②可得:2+2(cosacosb+sinasinb)=
| 1 |
| 2 |
即2cos(a-b)=t2-
| 3 |
| 2 |
∴cos(a-b)=
| 2t2−3 |
| 4 |
∵cos(a-b)∈[-1,1]
∴−1≤
| 2t2−3 |
| 4 |
-4≤2t2-3≤4
∴-1≤2t2≤7
解得:0≤t2≤
| 7 |
| 2 |
即:−
| ||
| 2 |
| ||
| 2 |
cosa+cosb的取值范围:[−
| ||
| 2 |
| ||
| 2 |
