> 数学 >
设x1、x2是方程2x2-4mx+2m2+3m-2=0的两个实根,当m为何值时,x12+x22有最小值,并求这个最小值.
人气:225 ℃ 时间:2019-08-20 19:22:03
解答
∵x1、x2是方程2x2-4mx+2m2+3m-2=0的两个实根,
∴△=(-4m)2-4×2×(2m2+3m-2)≥0,可得m≤
2
3

又x1+x2=2m,x1x2=
2m2+3m−2
2

∴x12+x22=2( m−
3
4
2
+
7
8
=2(
3
4
−m)
2
+
7
8

∵m≤
2
3

3
4
-m≥
3
4
-
2
3
>0,
∴当m=
2
3
时,x12+x22取得最小值为2×(
3
4
2
3
2
+
7
8
=
8
9
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版