>
数学
>
已知:如图,ABCD是⊙O的内接正方形,AB=4,F是BC的中点,AF的延长线交⊙O于点E,则AE的长是( )
A.
12
5
5
B.
4
5
5
C.
5
2
D.
6
5
5
人气:129 ℃ 时间:2019-08-18 13:30:51
解答
连接CE,由相交弦定理知,
AF•EF=BF•CF=4,
由勾股定理得,AF=2
5
,
∴FE=
2
5
5
,
AE=AF+EF=
12
5
5
.
故选A.
推荐
附加题:如图,在四边形ABCD中,点E是BC的中点,点F是CD的中点,且AE⊥BC,AF⊥CD. (1)求证:AB=AD; (2)请你探究∠EAF,∠BAE,∠DAF之间有什么数量关系?并证明你的结论.
如图,四边形ABCD内接于⊙O,CD∥AB,且AB是⊙O的直径,AE⊥CD交CD延长线于点E. (1)求证:AE是⊙O的切线; (2)若AE=2,CD=3,求⊙O的直径.
如图,点A,B,C,D在⊙O上,AB=AC,AD与BC相交于点E,AE=1/2ED,延长DB到点F,使FB=1/2BD,连接AF. 求证:直线AF与⊙O相切.
附加题:如图,在四边形ABCD中,点E是BC的中点,点F是CD的中点,且AE⊥BC,AF⊥CD. (1)求证:AB=AD; (2)请你探究∠EAF,∠BAE,∠DAF之间有什么数量关系?并证明你的结论.
如图,在正方形ABCD中,点E、F分别在边BC,CD上,如果AE=4,EF=3,AF=5,那么正方形ABCD的面积等于( ) A.22516 B.25615 C.25617 D.28916
如图,在Rt△ABC中,∠C=90°,AC=4,BC=2,分别以AC、BC为直径画半圆,则图中阴影部分的面积为_(结果保留π).
动物营养名词解释? 饲料添加剂名词解释?
椭圆x^2/16+y^2/4=1的左右焦点分别为F1F2点P在直线:x-根号3y+8+2根号3=0上.当角F1PF2取最大值时求PF1/PF2
猜你喜欢
北宋时期有个著名的画家叫文与可,他特别喜欢画竹子.“胸有成竹”就是由此而来的,它的意思是?
1.Peter has just arrived,but he talks as if he __a___ everything here.
68.某商店销售一批服装,每件售价150元,打8折出售后,仍可获利20元,设这种服装的成本价为每件x元,
用“续”组成不同的词语,填入下面的句子中.
怎么把一个三角形变成一个正方形(剪两刀后)
many a customer complains about the poor quality of the washing machine.其中many a costomer怎么翻译
一滑动变阻器'要求连入电路后滑片P向左移动;电阻减;那么连入电路两接线柱是
一氧气瓶的体积是32升,其中氧气的压力为13.2x1000Kpa.规定氧气压力降至1.01x1000
© 2025 79432.Com All Rights Reserved.
电脑版
|
手机版