>
其他
>
如图,四边形ABCD内接于⊙O,CD∥AB,且AB是⊙O的直径,AE⊥CD交CD延长线于点E.
(1)求证:AE是⊙O的切线;
(2)若AE=2,CD=3,求⊙O的直径.
人气:102 ℃ 时间:2019-10-05 13:59:43
解答
证明:(1)∵AB∥CD且AE⊥CD,∴AB⊥AE,∴AE是⊙O的切线;(2)连接AC,根据切割线定理:AE2=ED•EC,设DE=x,则22=x(x+3),解得:x1=1,x2=-4(舍去),即:DE=1,在Rt△ACE中,AC2=AE2+CE2,∴AC2=20,∵∠ACB...
推荐
如图,四边形ABCD内接于圆O,BD是圆O的直径,AE垂直CD,垂足为E,DA平分角BDE.1.求证AE是圆O的切线
如图,四边形ABCD内接于圆心O,CD平行AB且AB是圆心O的直径,AE垂直CD延长线于点E,求证:AE就圆O的切线
已知:如图,在四边形ABCD中,AB∥CD,AE⊥BD,CF⊥BD,垂足分别为E、F,且AE=CF,求证:AB=CD.
如图,四边形ABCD内接于圆O,BD是直径,AE垂直CD,垂足为E,DA平分∠BDE,求证AE是圆O的切线
已知:如图,ABCD是⊙O的内接正方形,AB=4,F是BC的中点,AF的延长线交⊙O于点E,则AE的长是( ) A.1255 B.455 C.52 D.655
watch(第三人称单数)( )
流星拖着一条发光的尾巴是什么能转化什么能
聿可以加什么偏旁
猜你喜欢
有机化学中的质子转移和质子交换分别是什么?遇到题目如何区分?请具体解释,
浅谈初中英语如何进行写作教学
英语翻译
氨根离子里的氮元素是几价啊?+3还是—3,黄绿色气体都有什么啊?
解不等式 3分之2x-1-6分之9x+2≤1
证明:函数F(x)=3x+2在(—∞,+∞)上是增函数
单缝的衍射条纹与双缝的干涉条纹有什么区别和联系
问:但我不确定,物理比较差.
© 2024 79432.Com All Rights Reserved.
电脑版
|
手机版