椭圆X2/4+Y2/3上点A 〔1,3/2〕,另外两个动点E、F,AE、AF的斜率互为相反数,求证:EF的斜率为1/2
人气:468 ℃ 时间:2020-01-30 12:50:27
解答
设AE斜率为k
则AE方程为y-(3/2)=k(x-1)①
x²/4+y²/3=1 ②
①,②联立得出两个解一个是A(1,3/2)另一个是E(x1,y1)
①代入②消去y得(1/4+k²/3)x²-(2k²/3-k)x+k²/3-k-1/4=0
根据韦达定理 x1·1=(k²/3-k-1/4)/(1/4+k²/3)③
将③的结果代入①式得
y1=(-k²/2-k/2+3/8)/(1/4+k²/3)
设AF斜率为-k,F(x2,y2)
则AF方程为y-(3/2)=-k(x-1)④
x²/4+y²/3=1 ②
②④联立同样解得
x2=(k²/3+k-1/4)/(1/4+k²/3)
y2=(-k²/2+k/2+3/8)/(1/4+k²/3)
EF斜率为
(y2-y1)/(x2-x1)=1/2
所以直线EF斜率为定值,这个定值是1/2.
推荐
- 椭圆C过点A(1,3/2),两个焦点为(-1,0)(1,0)E,F为椭圆上两点,且AE,AF的斜率相反,用参数方程的方法解EF的斜
- (2/2)AE的斜率不为零且与AF的斜率互为相反数,证明直线EF的斜率为定值,并求出这个定值
- 椭圆x^2/4+y^2/3=1上一点A(1,3/2),E,F为椭圆上两动点,AE斜率与AF斜率互为相反数,
- 已知椭圆过点(1.1.5)俩个焦点为(-1,0(1,0 EF是其动点,直线AE与AF的斜率为相反数证EF斜率为定值.求
- 已知椭圆c:x2/a2+y2/b2=1的离心率为根号3/2,过右焦点f且斜率为k的直线与c交与A.B两点,若AF=3FB.求k
- 北京四合院象征着什么意义
- 政治三科的知识点(必修1,2,3 会考用)
- 每个月用水在5吨以下,每吨按1.2元收,5-15吨,每吨水费加价150%,5吨—15吨每吨水的价格.
猜你喜欢