当x≥2时,求函数y=2x²+4x+3/x²+2的取值范围.
人气:337 ℃ 时间:2019-08-20 22:21:12
解答
求导
f(x)'=4x+4-6/x^3
在x>2时
-6/x^3>-6/8
4x>8
所以f(x)'>f(2)'>0
所以f(x)在x=2处取得最小值.f(2)=75/4
并且f(x)=2(x+1)^2+3/x^2
所以f(x)在x>=2上没有上限
所以取值范围是y>=75/4
推荐
猜你喜欢
- jan has lunch at twelve 对 at twelve 提问
- 一瓶2升的果汁喝了10分之3,还剩多少毫升
- 把长8cm,宽3cm,高3cm的长方体锯成一个最大的正方体,锯掉部分的体积是多少?
- 象公路 水路 铁路还有什么路?
- 温室效应,臭氧空洞,酸雨分别是什么引起的?
- 一个最简分数,它的分子分母的积是100,这个最简分数是( )
- 求曲线y=1/2x^2,x^2+y^2=8所围成的图形面积
- 已知向量a,b满足| a |=1 b=(2,1)且λ a+b=0 则 |λ |=