> 数学 >
tan(x+π/4)=(1+tanx)/(1-tanx)
类比于以上式子,设x属于R,a不等于0,f(x)是 非常数函数,并且f(x+a)=[1+f(x)]/[1-f(x)],则f(x)是周期函数吗?证明你的结论
人气:324 ℃ 时间:2020-01-30 13:24:51
解答
f(x+a)=[1+f(x)]/[1-f(x)]=[1+(1+f(x-a)/(1-f(x-a))]/[1-(1+f(x-a)/(1-f(x-a))]
=[(1-f(x-a)+(1+f(x-a)]/[(1-f(x-a)-(1+f(x-a)]=2/2f(x-a)
所以 f(x+a)*f(x-a)=1
不用我说了吧?是周期为4a的周期函数
还是说说吧 f[x+a]=1/f[x-a]=1/1/f[x-3a]=f[x-3a]
所以 f[x+4a]=f[x]由这个[(1-f(x-a)+(1+f(x-a)]/[(1-f(x-a)-(1+f(x-a)]我怎么算出负的2/2f(x-a)?是我错了 是负的 但是答案不变
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版