奇偶函数的定积分
f(x)为偶函数且在(-a,a)上连续 证明
∫(-a,a)f(x)dx=2∫(0,a)f(x)dx
人气:270 ℃ 时间:2020-01-30 05:17:58
解答
证明;
f(x)是偶函数,
则有:
f(x)=f(-x)
f(x)+f(-x)=2f(x)
积分;(-a,a)f(x)dx
=积分:(-a,0)f(x)dx+积分:(0,a)f(x)dx
=-积分:(a,0)f(-t)dt+积分(0,a)f(x)dx
=积分:(0,a)f(-t)dt+积分(0,a)f(x)dx
=积分:(0,a)f(-x)dx+积分;(0,a)f(x)dx
=积分:(0,a)[f(x)+f(-x)]dx
=2积分:(0,a)f(x)dx
推荐
猜你喜欢
- 有don't do sth instead of doing的用法吗,怎么翻译?
- A successful team beats with one heart是什么意思
- he often___(relax) half a day
- 用作图法求直线斜率时,必须采用什么方法?
- Edward Smith is _____old.He works in a bank.
- 连词成句 threw,Li,Ming,the,ball,another,boy,to
- Lily doesn't want to buy__same present__Lucy did填空
- 麻烦您了,您帮我看看这道题呗 we see things by our eyes对么?为什么