> 其他 >
(arcsinx)²在x=0处的泰勒展开,我知道arcsinx的麦克劳林展开
人气:349 ℃ 时间:2019-10-23 15:46:50
解答
先求出arcsin(x)在x=0的泰勒展开,为x+(1/6)*x^3+(3/40)*x^5+(5/112)*x^7+O(x^9),
通项为(2n-1)!/(2n)!*x^(2n+1).第n+1项系数为:A_(n+1)=(2n-1)!/(2n)!/(2n+1).
这个结果在很多版本的微积分、数学分析、高等数学课本上都能够找到
然后平方,只有偶次项,根据多项式乘法法则不难算出,通项为C_(n+1)=∑A_(k)*A_(2n+2-k)*x^(2n+2) (k=1, 2, ... , n+1),
其中,前面几项为x^2+(1/3)*x^4+(8/45)*x^6+(4/35)*x^8+(128/1575)*x^10+O(x^12),
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版