三边长分别为2n2+2n,2n+1,2n2+2n+1(n>0)的三角形是不是直角三角形?为什么?
人气:111 ℃ 时间:2019-08-21 15:37:01
解答
证明:∵三边长为2n2+2n,2n+1,2n2+2n+1(n>0),
∴(2n2+2n)2=4n4+8n3+4n2,
(2n+1)2=4n2+4n+1,
(2n2+2n+1)2=4n4+4n2+1+8n3+4n2+4n=4n4+8n3+8n2+4n+1,
∴(2n2+2n)2+(2n+1)2=4n4+8n3+8n2+4n+1,
∴(2n2+2n)2+(2n+1)2=(2n2+2n+1)2,
故三边长为2n2+2n,2n+1,2n2+2n+1(n>0)的三角形是直角三角形.
推荐
猜你喜欢
- 一个长方体的表面积是420平方厘米,这个长方体正好可以截成3个小正方体,则每个小正方体的表面积是_平方厘米.
- 将CaCI2·nH2O的晶体2.19g溶于水,配成100mL溶液,取此溶液20mL与10g5.74%的AgNO3溶液反应,使氯离子刚好反
- 彩虹上一个 米是啥成语呀
- 越王勾践卧薪尝胆,尝的是什么动物的胆
- 100万个鸡蛋有多重
- 分数和小数有什么不同,
- (列方程)一份试卷上共有25道选择题,做对一道题得4分,错一道扣1分,某同学得了90分,他作对了几道
- 已知:a>0,b>0,c>0,求证①(a+b)的平方≥4ab ②(a+b)(b+c)(c+a)≥8abc