简单的高数题,用定积分求平面图形的面积
求由曲线y=x^2,直线y=4所围成的平面图形的面积
求由曲线y=1/x,直线y=x和x=3所围成的平面图形的面积
最好能画图,thanks~
人气:460 ℃ 时间:2019-08-21 21:41:58
解答
1) y=x^2与y=4的交点为(-2,4), (2,4)
所以面积=∫(-2,2)(4-x^2)dx
=[4x-x^3/3](-2,2)
=2[8-8/3]
=32/3
2)y=1/x与y=x的交点为(1, 1)
面积=∫(1,3)(x-1/x)dx
=[x^2/2-lnx](1,3)
=(9/2-ln3)-(1/2-ln1)
=4-ln3
推荐
- 最简单的高数定积分例题
- 请教一道高数的题目(简单的定积分应用)
- 求一道简单的定积分.
- 高数定积分的简单应用
- 由if,what,when引导的宾语从句,造句,各三句,求求哥哥姐姐,
- 已知P是∠AOB的平分线上一点,PC⊥OA,PD⊥OB,垂足分别为C、D
- 化肥厂今年前七个月完成了全年计划生产任务的75%,再生产2000吨就可超产200吨.该厂全年计划生产化肥多少
- 将1.2、1.4、1.6、1.8、2.0、2.2、2.4、2.6、2.8填入图中,满足横行、竖列和对角线上的三个数的和都相等.
猜你喜欢