设数列an的前n项和为Sn,且Sn=n^2-4n+4《1》求an通项《2》设bn=an除以2^n数列bn的前n项和为Tn,求证四分之
人气:355 ℃ 时间:2020-04-06 06:30:50
解答
当n=1时a1=s1=1当n>1时:an=sn-sn-1=n^2-(n-1)^2+4=2n-5第2问要求证的结论应该是证明1/4≤Tn<1吧证明如下:Tn =1/2-1/2^2+1/2^3+3/2^4+...+(2n-7)/2^(n-1)+(2n-5)/2^n=1/2^2+1/2^3+3/2^4+...+(2n-7)/2^(n-1)+(2n-...
推荐
- 已知数列an的前n项和Sn=2n^2+2n,数列bn的前n项和Tn=2-bn
- 若数列{an]满足前n项和Sn=2an-4,bn+1=an+2bn,且b1=2,求:bn;{bn}的前n项和Tn
- 设数列{an},{bn}都是等差数列,它们的前n项和分别为sn,Tn
- 已知数列{an}的前n项和sn=n^2,设bn=an/3^n,记数列{bn}的前n项和为Tn
- 等差数列{an},{bn}的前n项和分别为Sn,Tn,且SnTn=3n−12n+3,则a8b8=_.
- 秘鲁的秘是读mi,还是bi?
- 关于结构化程序设计的基本知识
- How many computers are there in this room?___They aremoved to anther room.
猜你喜欢