椭圆中心在原点,焦点在坐标轴上,与P(1,2)且K=-2的直线L相交所得弦恰好被P平分,求离心率
我的过程是这样子的.
设A(X1,Y1),B(X2,Y2),椭圆:x^2/a^2+y^2/b^2=1
L:Y=-2X+4
因为P平分
x1+x2=2
y1+y2=4
点插法:b^2*x1^2+a^2*y1^2=a^2*b^2 ①
b^2*x2^2+a^2*y2^2=a^2*b^2 ②
①-②,b^2(x1+x2)(x1-x2)-a^2(y1+y2)(y1-y2)=0
2b^2(x1-x2)=4a^2(y1-y2)
k=y1-y2/x1-x2=2b^2/4a^2=-2
什么情况!两个平方相除是-2.前面找不错错误.
人气:279 ℃ 时间:2020-05-17 10:34:10
解答
中点弦公式,焦点在x轴上,斜率k=-(b^2/a^2)(x0/y0)
焦点在y轴上,k=,
明显这儿错在椭圆方程是y^2/a^2+x^2/b^2=1
推荐
- 已知F1,F2是椭圆x^2/a^2+y^2/b^2=1(a>b>0)的左右焦点,A是椭圆上位于第一象限内的一点,若向量AF2与向量F1F2乘积为0,椭圆的离心率等于2分之根号2,三角形AOF2的面积为2根号2,求椭圆的方程。
- 水星运转的轨道是以太阳的中心为一个焦点的椭圆,轨道上离太阳中心最近的距离约为4.7×10的八次方千米,最远的距离约为7.05×10的8次方千米,假设以这个轨道的中心为原点,以太阳中心及轨道中心所在直线为X轴,建立直角坐标系,求水星轨道的方程
- 如图,已知椭圆C的方程为:x2a2+y2b2=1(a>b>0),B是它的下顶点,F是其右焦点,BF的延长线与椭圆及其右准线分别交于P、Q两点,若点P恰好是BQ的中点,则此椭圆的离心率是_.
- 1.若椭圆的两个焦点三等分长轴,则此椭圆短轴长与长轴长之比等于____.
- P为椭圆x的平方/a的平方+y的平方/b的平方=1上的一点,F1为它的一个焦点,求证:以PF1为直径的圆与以长轴为直径的圆相切
- 已知集合M是满足下列性质的函数f(x)的全体:存在非零常数k,对任意x∈D,等式f(kx)=k/2+f(x)恒成立. (1)试判断一次函数f(x)=ax+b(a≠0)是否属于集合M; (2)证明f(x)=log2x属于集
- 如果已知P,Q两点坐标,怎么算向量PQ,如果已知两向量的坐标,这两个向量相乘怎么算
- 请问 2009年8月8日是星期六 2010年10月是星期几?要解释每一步算式!
猜你喜欢