> 数学 >
若方阵A满足方程A平方-2A+3I=0,则A,A-3I都可逆,并求它们的逆矩阵,如何证明?
人气:273 ℃ 时间:2020-05-04 02:26:54
解答
证明:因为 A^2-2A+3I=0
所以 A(A-2I)=-3I
所以 A 可逆,且 A^-1 = (-1/3)(A-2I).
又由 A^2-2A+3I=0
得 A(A-3I)+A-3I+6I=0
所以 (A-3I)(A+I)=-6I
所以 A-3I 可逆,且 (A-3I)^-1 = (-1/6)(A+I).
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版