对于任意正数a,b有f(ab)=f(a)+f(b),且f(1)的导数=1 证明f(x) 在零到正无穷可导,求f(x)
设f(x)函数满足f(x1+x2)=f(x1)*f(x2),其中x1,x2为任意实数,而且已知f(0)的导数=2
求f(x)
f(x)的导数
f(a*b)
这题答案第一个好象是ln (x)
第二个好象是e的2t次方
但是我不会求
人气:140 ℃ 时间:2020-10-01 21:37:32
解答
第一题:f(1)的导数=1,故f(x)的导数有两种形式:x或1/x,对其进行积分得f(x)=(1/2)x^2+p或f(x)=lnx+q,{p,q为实数},因为对于任意正数a,b有f(ab)=f(a)+f(b),所以将f(x)=(1/2)x^2+p和f(x)=lnx+q分别代入,f(x)=(1/2)x^...
推荐
- 对于任意正数a,b有f(ab)=f(a)+f(b),且f(1)的导数=1 证明f(x) 在零到正无穷可导,求f(x)
- 求高等数学题的解法
- 高等数学习题解法
- 求一高数题的解法
- 高数,求这类题的解法,
- 用函数观点看一元二次方程 1、 二次函数y= -x2+4x的值为2,求自变量x的值, 可以看作是解一元二次方程____
- 一个长方形,宽是6厘米,如果宽增加4厘米,面积就增加56厘米2,原来长方形的面积是多少?
- 英美法资产阶级革命的成果,并逐一说明其作用
猜你喜欢