> 数学 >
已知f(x)=x²+c,且f[f(x)]=f(x²+1),F(x)=f[f(x)]+mf(x),是否存在实数m,使f(x)在(-∞,-1)上是减函数在(-1,0)上是增函数?
人气:143 ℃ 时间:2020-03-19 07:45:12
解答
已知f(x)=x²+c,且f[f(x)]=f(x²+1)
所以可得c=1
F(x)=(x^2+1)^2+1+mx^2+m=x^4+(2+m)x^2+(1+m)
此时看成一个一元二次函数即可
得到-(2+m)/2=(-1)^2=1
解得m=-4.
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版