如图,抛物线y=ax^2+bx+1与x轴交于两点A(-1,0),B(1,0),与y轴交于点c
.(1)求抛物线的解析式;
(2)过点B作BD‖CA与抛物线交于点D,求四边形ACBD的面积;
(3)在x轴下方的抛物线上是否存在一点M,过M作MN垂直于x轴于点N,使以A,M,N为顶点的三角形与△BCD相似?若存在,则求出点M的坐标;若不存在,请说明理由.
不可以用斜率昂
人气:484 ℃ 时间:2019-09-22 06:14:00
解答
y=-x^2+12(2,-3)(-2,3)
推荐
- 如图,对称轴为直线x=-1的抛物线y=ax²+bx+c(a≠0)与x轴相交于A,B两点,其中点A的坐标为(-3,0)
- 如图抛物线y=ax的平方+bx+c(a>0)与x轴交于A(1,0),B(5,0)两点,与y轴交于点M,抛物线顶点为P,且PB=2根号5(1)求这条抛物线的顶点P坐标和解析式(2)求三角形MOP的面积
- 如图 抛物线Y=aX∧2+bX+C(a≠0)与X轴,Y轴分别相交与A(-1,0).B(3,0)C(0,3)其顶点为D
- 如图,抛物线y=ax平方+bx+c与x轴相交于两点A(1,0),B(3,0)与y轴相交于点C(0,3).(1)求抛物线的函 (2)
- (2009•新洲区模拟)已知抛物线y=ax2+bx+c与x轴交于A(-1,0),B(3,0),与y轴负半轴交于C,顶点为D. (1)当OC=OB时,求抛物线的解析式; (2)在(1)的条件下,抛物线的对称轴上是否
- 过点(-5,-4)作一直线l,使它与坐标轴相交且与两轴所围成的三角形面积为5.求此直线的方程.我...
- 数学问题已知3分之x等于4分之y等于5分之m不等于0
- 父子两人下棋,约定父胜一局得2分,子胜一局得10分,下完18局后,父子两人得分相等,试列出求父子各胜几局的二元一次方程组(设未出现和局).
猜你喜欢