设方阵 A=E-2aaT,其中 E 为 n 阶单位矩阵,a 为 n 维单位列向量,证明:任意n维向量B都有//AB//=//B//
人气:179 ℃ 时间:2020-01-27 15:36:27
解答
分三步:
1.因为 a 为 n 维单位列向量,所以有
a'a = 1 ( 记 a' = aT )
2.A'A = (E-2aa')(E-2aa') = E - 4aa' + 4aa'aa' = E-4aa'+4aa' = E
3.||AB|| = √(AB)'(AB) = √B'A'AB = √B'B = ||B||.
推荐
- 设α为n维列向量,E为n阶单位矩阵,证明A=E-2αα^T/(α^Tα)是正交矩阵
- 设A是n*n矩阵,X是任意的n维向量,B是任意的n阶方阵,则下列说法错误的是:
- 设方阵 A=E-2aaT,其中 E 为 n 阶单位矩阵,a 为 n 维单位列向量,证明:A为对称的正交矩阵.
- 任何n个n维向量组成的方阵A,也就是n维满秩方阵,如线性无关,则必可化为n维单位矩阵吗?
- 矩阵证明题:若n阶方阵满足AA^T=E,设a是n维列向量,a^Ta=/0矩阵A=E-3aa^T.
- 为什么说雨中闻蝉叫,预报晴天到?
- 比较大小:2a-3与2a+1
- 已知直线l方程是x=1+t y=t-1(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系
猜你喜欢