请教一道中值定理的证明题
已知函数在闭区间[a,b]上连续,在开区间(a,b)内可导,证明:存在c属于(a,b),使得cf'(c)+df(c)=0
下面是书中的证明思路:
cf'(c)+df(c)=0两边同除以xf(x)变为(f'(x)/f(x))+(d/x)=0,求积分得
f(x)*(x^d)=1,因此构造辅助函数F(x)=f(x)*(x^d),再在[a,b]上运用罗尔定理即可证明.
关于上面的思路,我看到“构造辅助函数F(x)=f(x)*(x^d)”这里的时候,怎么看都看不出F(a)=F(b)啊,要怎样用罗尔定理呢?
人气:159 ℃ 时间:2020-02-06 02:00:23
解答
只能说题目中少条件
题目中的条件只是大致给了一个函数f(x)
比如取f(x)=1 a=0 b=1
没有c能满足要证明的方程
推荐
- 中值定理证明题
- 问一个用微分中值定理解决的证明题.
- 与拉格朗日中值定理有关的一道证明题
- 与中值定理有关的一道证明题
- 求两道题,一个是连续的,一个可能是中值定理证明的.
- 英语翻译:我去过一家店,那里菜的分量和菜单上的一样
- 一个圆形跑到长800米,甲每分钟跑160米,乙的速度是甲的二倍,乙在甲的前方100米 多长时间乙追上甲?
- 某物业公司准备向银行贷款10万元,借款1年后还本付息.甲银行贷款年利率6%,按年计息,乙银行贷款年利率5%,按季计息.试分析该公司应选择哪家银行贷款才合算?
猜你喜欢