已知函数f(x)=log3(x/3)*log3(x/9),x∈[1/9,27],求f(x)的最大值
人气:172 ℃ 时间:2019-08-21 15:22:13
解答
f(x)=log3 (x/3)*log3 (x^1/3²)
=(1/2)log²3 (x/3)
底数为3 大于1 所以log3 x是增函数
f(x)=(1/2)log²3(x/3)
log3 (x/3)=0 x=3
当x=3 函数单调增
所以 当x=1/9 或x=27时 有极大值
f(1/9)=9/2 f(27)=2
所以最大值为f(1/9)=9/2
推荐
- 已知x∈[1\27,1\9],函数f(x)=(log3 x\27)(log3 3x)求函数f(x)的最大值和最小值,
- 已知X属于【1/27,1/9】,函数f(x)=log3(x/27)*log3(3x),若方程f(x)+m=0有两实根b,d,试求db的值.
- 已知函数f(x)=log3(3x)·log3(x/9),求x∈[1,27]时函数的最值
- 若x∈[1/27,9],求函数f(x)=log3(x/27)*log3(3x)的最大值与最小值,并求出相应的x的值
- 已知函数f(x)=log3(x/27)*log3(ax).(1/27
- 电磁波中每一处的电场强度和磁感应强度总是相互垂直的,且与波的传播方向垂直. 用高中物理知识解释一下.
- 开始提问
- 他真希望这架飞机是他的用英语怎么说
猜你喜欢