> 数学 >
一道立体几何证明
正四面体ABCD的棱长为a,M、N分别为棱AB、CD的中点
求证:MN是AB、CD的公垂线段
人气:433 ℃ 时间:2020-04-04 21:10:02
解答
连接AN,BN因为是正4面体,所以三角形ADC,BDC是正三角形N是DC中点所以AN,BN都垂直于CD所以AN=BN=(2分之根号3)a 计不计算其实无所谓,主要是AN=BN这样三角形ANB就是等腰三角形,M是AB中点,所以NM垂直于AB同理可得MN垂直...
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版