已知多项式f(x)=a0+a1x+...an(x^n)r的系数为a0,a1...an 成等差数列,且f(0)=f(1)=105,f(-1)=15,
求n和 an的...写过程哦
人气:330 ℃ 时间:2020-05-25 03:38:26
解答
条件是f(0)=f(1)=105吗?
解 x=0 代入f(x) 得 f(0)=a0; 所以a0=105
x=1 代入f(x) 得 f(1)=a0+a1+a2.+an ; 根据等差数列求和公式 a0+a1+a2.+an=(a0+an)*n/2 所以(a0+an)*n/2=105 即(105+an)*n/2=105
x=-1 代入f(x) 得 f(-1)=a0-a1+a2-a3.+((-1)^n)*an=15 因为a0-a1=a2-a3=.=-d
所以n为奇数时 f(-1)=-d*(n+1)/2 ;n为偶数时,f(-1)=-d*n/2+an
又an=a0+(n-1)d=105+(n-1)d
根据上述推到的3个方程解除即可 (105+an)*n/2=105 ; n为奇数时 f(-1)=-d*(n+1)/2 =15 n为偶数时,f(-1)=-d*n/2+an=15; an=105+(n-1)d没简单一些的过程??
推荐
- 已知多项式f(x)=a0+a1x+...anx^n的系数为0,a1...an 成等差数列,且f(0)=f(1)=105,f(-1)=15,求n和 an的
- 设a0+a1 /2+.+an /(n+1)=0 证明多项式f(x)=a0+a1x+.+anx^n在(0,1)内至少有一个零点
- 设a0+a1/2+...+an/(n+1)=0,证明多项式f(x)=a0+a1x+...+anx^n在(0,1)内至少有一个零点.
- 已知多项式(1+x)+(1+x)^2+L+(1+x)^n=a0+a1x+L+anx^n,且a1+L+an=120,则n(nI(在上面有^)N的正整数)的一个可能值为
- 多项式F(X)=a0+a1x+a2x^2+...+anx^n,证明:F(X)=0有n+1个不同根,则F(X)恒等于0
- 丑小鸭和我的作文
- 地球半径为R,地面上重力加速度为g,在高空绕地球做匀速圆周运动的人造卫星,其线速度可能为?我算到gr^2 但答案为(gr/2)^2 为什么
- 有两桶油,第一桶油是第二桶油的1.5倍,如果从第一桶油中倒入第二桶4千克,两用油相等
猜你喜欢