已知|a→|=√2,|b→|=3,a→和b→的夹角为45度,求使向量a→+m b→与ma→+ b→的夹角是锐角时m的取值范围.
(注:m不是向量,a→和b→皆为向量,向量a的模是根号二,向量b的模是三)
人气:229 ℃ 时间:2020-06-07 15:52:30
解答
他们夹角是锐角,则他们的内积大于零
他们的内积是:(a+mb)*(ma+b)=m(a^2+b^2)+(1+m^2)a*b=5m+(1+m^2)3
3m^2+5m+3的 Δ=-11
推荐
- 已知:a=(4,2),求与a垂直的单位响亮的坐标
- 很简单的一道向量题目
- 一道简单的向量题
- 设O为三角形ABC内部一点,且向量OA+向量OB=-2向量OB,那么三角形AOC与三角形ABC的面积之比是多少
- 求与向量 a=(6,8) 共线的单位向量
- 《陌生人的红苹果》阅读答案
- 在某加油站,大汽车加汽油25升,小汽车加汽油10升,大汽车比小汽车多付110.25元.没升汽油多少元?
- 已知集合A={Y|Y=X2-3/2X+1,X属于【-1/2,2】,B=
猜你喜欢
- 王文好像有难言之隐想说又不愿说他此刻的样子可以用这些成语来形容
- I am very sorry to hear the new对吗
- 求下列各因数的最大公约数和最小公倍数:(1)24,18,8 (2)36,27,24 (3)12,36,24 (4)20,65,40
- 说一个人八面玲珑,这个八面玲珑是什么意思?
- 失物招领的英文
- 如图,已知AB∥DC,AE⊥DC,AE=12,BD=15,AC=20,则梯形ABCD的面积是( ) A.140 B.130 C.160 D.150
- one two three four five
- a>0,b>0,a≠b,m.n是正整数,n>m,求证a^n+b^n>a^mb^(n-m)+a^(n-m)b^m