∴y″+y′-2y=0的通解为y=C1e-2x+C2ex.
设y″+y′-2y=xex (*)
y″+y′-2y=sin2x (**)
由于(*)的f(x)=xex,λ=1是特征根,故令(*)的特解为y1(x)=(ax2+bx)ex,
代入(*)得a=
| 1 |
| 6 |
| 1 |
| 9 |
由y″+y′-2y=sin2x得
y″+y′−2y=
| 1 |
| 2 |
显然y″+y′−2y=
| 1 |
| 2 |
| 1 |
| 4 |
对y″+y′−2y=−
| 1 |
| 2 |
| 1 |
| 2 |
令其特解为y2(x)=Acos2x+Bsin2x,代入得A=
| 3 |
| 40 |
| 1 |
| 40 |
y2(x)=−
| 1 |
| 4 |
| 3 |
| 40 |
| 1 |
| 40 |
y=C1e−2x+C2ex+(
| 1 |
| 6 |
| x |
| 9 |
| 1 |
| 4 |
| 3 |
| 40 |
| 1 |
| 40 |
