>
数学
>
某产品进货单价为90元,按100元一件出售时,能售500件,如果这种商品每涨1元,其销售量就减少10件,为了获得最大利润,其单价应定为( )
A. 130元
B. 120元
C. 110元
D. 100元
人气:361 ℃ 时间:2020-03-24 02:37:36
解答
设应涨价x元,
则所获利润为:
y=(100+x)(500-10x)-90×(500-10x)
=-10x
2
+400x+5000
=-10(x
2
-40x+400)+9000
=-10(x-20)
2
+9000,
可见涨价20元,单价为100+20=120元时获利最大.
故选:B.
推荐
数学二次函数何时获得最大利润类题
数学二次函数应用
数学二次函数的应用
某商店将每个进价为10元的商品,按每个18元销售时,每天可卖出60个,经调查,若将这种商品的售价(在每个18元的基础上)每提高1元,则日销售量就减少5个;若将这种商品的售价(在每个
数学(二次函数的应用):
一个做匀加速直线运动的物体,从某时刻开始观察,2s内的位移为6m,第8s末的速度大小为10m/s,求: (1)该物体的初速度和加速度各是多大? (2)该物体在前20s内的位移多大? (3)速度
空气看不见,摸不着,闻不到,有什么办法证明空气存在,
聚苯乙烯红外谱图中特征吸收峰属何种基团的什么形式的振动
猜你喜欢
一年级数学下册复习方案
海底动物介绍 作文
我明天要上学了
《未来的汽车》300字作文
一道关于进制数转换数学题
Let's have tomato soup.(改一般疑问句)
在街道的尽头有一家商店.有英文怎么说?
We are going to play basketball tomorrow.(划线部分提问)play basketball划线
© 2025 79432.Com All Rights Reserved.
电脑版
|
手机版